

LA SCARSITA' DELLA RISORSA IDRICA IN PERIODI DI CRISI CLIMATICA: PROBLEMATICHE ESPERIENZE E PROPOSTE DI INTERVENTI DI MITIGAZIONE

Dip.to di Fisica, Aula Magna "Tullio Regge", Via P. Giuria, 1 - TORINO

29 Giugno 2023

PROGETTARE BACINI DI RICARICA DELLE FALDE IDRICHE COME STRATEGIA DI ADATTAMENTO AI CAMBIAMENTI CLIMATICI.

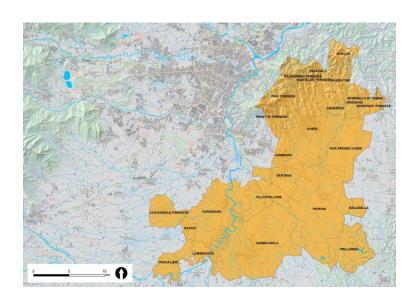
SOLUZIONI A SCALA INTERCOMUNALE: FATTIBILITA' TECNICA E URBANISTICA

Davide Murgese

murgese@seacoop.com

DIPARTIMENTO DI SCIENZE DELLA TERRA, UNIVERSITA' DI TORINO

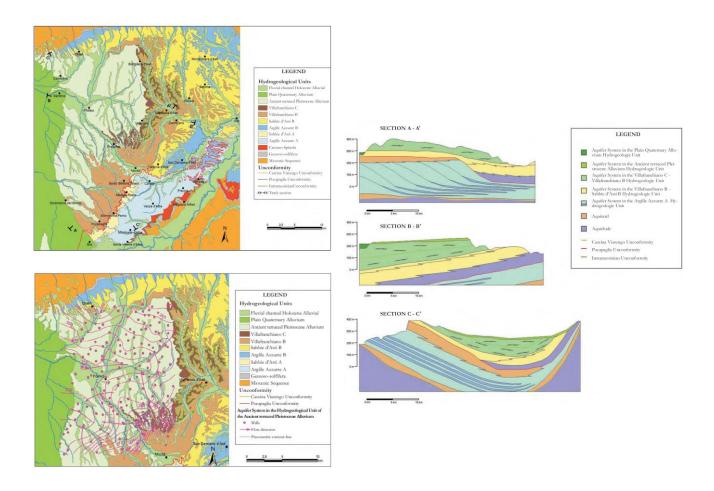
ORDINE DEI GEOLOGI DELLA REGIONE PIEMONTE


Premessa

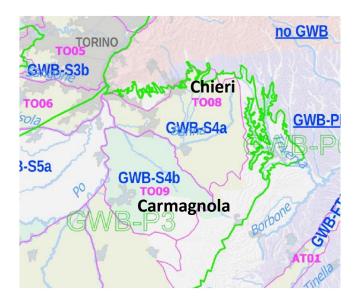
- Aprile 2022 Costituzione del **Distretto del Cibo del Chierese-Carmagnolese**
- Luglio 2022 Documento sulla siccità e la gestione delle risorse idriche del territorio del Distretto del Cibo del Chierese-Carmagnolese
- Dicembre 2022 Incarico da parte della Città di Chieri, Assessorato all'agricoltura: studio riferito al territorio di Chieri per l'applicazione delle strategie definite nel documento

Potenziare la ricarica degli acquiferi

Ottimizzare i consumi

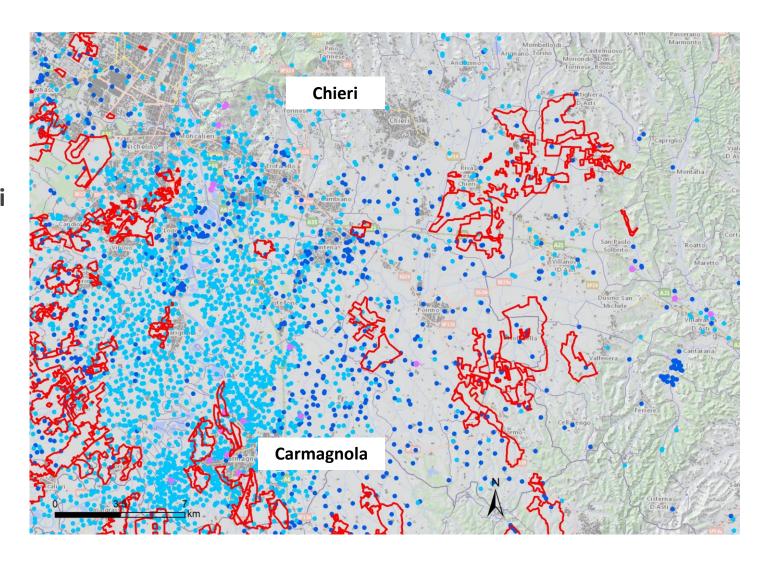

Tutelare la risorsa e gli ecosistemi

"Studio geologico dell'Altopiano di Porino" (Forno, 1982)


"Relations between stratigraphy, groundwater flow and hydrogeochemistry in Poirino Plateau and Roero areas of the Tertiary Piedmont Basin, Italy" (Vigna et al., 2010)

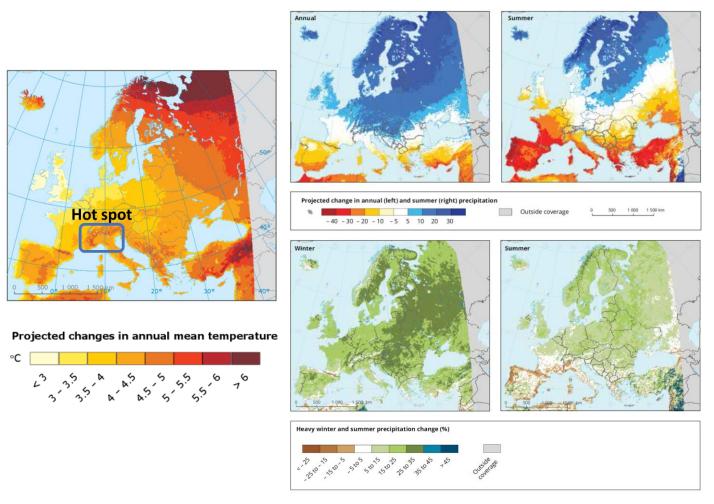
Nel territorio del Distretto il principale processo di apporto di acqua è legato alla ricarica delle acque sotterranee.

L'acqua che arriva è trasferita come deflusso superficiale.


ACQUIFERO SUPERFICIALE					
ENTRATE	ENTRATE		Mm3/anno	m3/s	%
Infiltrazione efficace	Infiltrazione efficace		134	4,2	46%
Flusso in ingresso al contorno	Flusso in ingresso al contorno (orizz.)		19	0,6	7%
Flusso dal 2° al 1° strato (vert	Flusso dal 2° al 1° strato (vert.) Perdite in subalveo		136	4,3	47%
Perdite in subalveo			1	0,0	0%
	Totale	323	289	9,2	100%
USCITE					
Flusso in uscita al contorno (d	Flusso in uscita al contorno (orizz.) Flusso dal 1° al 2° strato (vert.)		19	0,6	6%
Flusso dal 1° al 2° strato (vert			91	2,9	30%
Prelievi da pozzo	Prelievi da pozzo		22	0,7	7%
Drenaggio verso reticolo princ	Drenaggio verso reticolo principale		72	2,3	24%
Drenaggio rete secondaria, fo	Drenaggio rete secondaria, fontanili		101	3,2	33%
	Totale	340	305	9,7	100%
Variazione di immagazziname	Variazione di immagazzinamento		-15	-0,5	-5%

La principale fonte di approvvigionamento per uso irriguo è rappresentata dalle acque sotterranee prelevate dai pozzi.

Anche i consorzi irrigui del territorio captano l'acqua sotterranea mediante pozzi e la distribuiscono ai territori di competenza.


Cambiamenti climatici

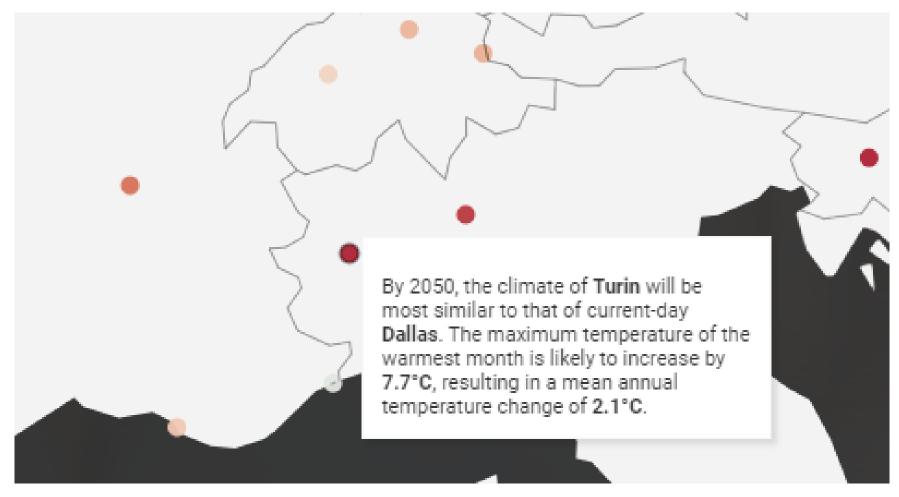
Aumento delle temperature medie annue (3 – 4 °C)

Diminuzione piogge in primavera-estate

Aumento piogge intense autunno-inverno

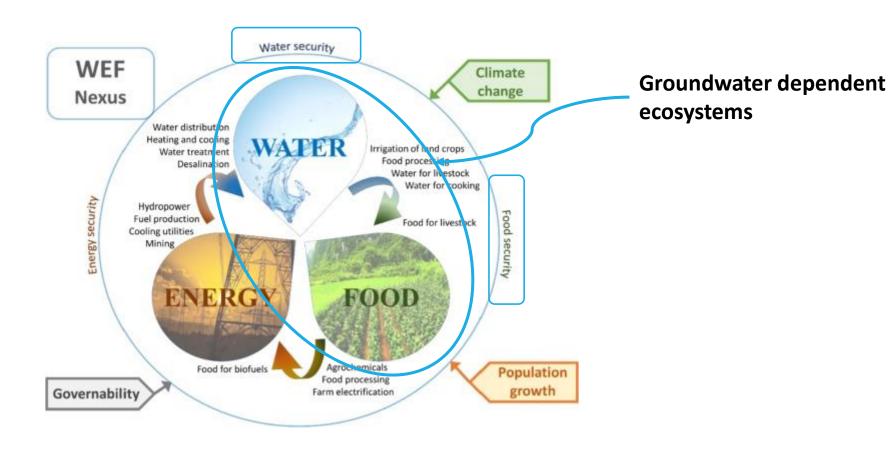
Aumento frequenza e durata periodi di siccità

"Climate change adaptation and disaster risk reduction in Europe" (EEA, 2017)


		Ambito	Fattori di pressione connessi ai cambiamenti climatici	Fattori climatici che intensificano le pressioni sul territorio
		Rischio idrogeologico	Aumento delle temperature Rapido scioglimento della neve Scioglimento del permafrost	Aumento delle precipitazioni intense Rapida formazione delle ondate di piena Aumento della probabilità di innesco frane
		Incendi	+20% rischio incendi Aumento aree percorse da incendi con aumento di particolato e CO2	+20-40 gg/anno durata della stagione degli incendi +21-43% superficie percorsa da incendi
-	•	Risorse idriche	Riduzione fino al 40% (2080) della portata dei corsi d'acqua Incremento dei prelievi (+10/15%) Competizione intersettoriale per l'accesso alla risorsa	Incremento della possibilità dei fenomeni di eutrofizzazione Incremento dell'apporto di nutrienti in relazione alle alluvioni Riduzione della capacità di ricarica delle falde
•		Agricoltura	Riduzione rese colture a ciclo primaverile-estivo Variazione della resa del frumento Traslazione areali di produzione Eventi estremi Incremento fabbisogni idrici colturali Variazioni della qualità del cibo (contenuto proteico, qualità di panificazione, contenuto in minerali)	Stress per gli animali e riduzione produttività Disponibilità foraggio e acqua in periodi diversi Nuove avversità e azione dei patogeni prolungata nell'anno o traslata rispetto alle stagioni

[&]quot;Analisi del rischio. I cambiamenti climatici in Italia" (Spano et al., 2020)

Prospettive


https://crowtherlab.pageflow.io/cities-of-the-future-visualizing-climate-change-to-inspire-action#213121

"Understanding climate change from a global analysis of city analogues" (Bastin et al., 2019)

Strategia

Coerenza con il Water-Energy-Food Nexus

Strategia

Definire modalità di intervento coerenti con il funzionamento del sistema: garantire e potenziare la capacità di ricarica degli acquiferi

Vantaggi

L'acqua sotterranea permane il loco per lungo tempo e non è soggetta a evaporazione

I volumi di acqua trattenuta sono di ordini di grandezza superiore alle strategie di invaso

Il sistema di approvvigionamento è basato sul prelievo di acque sotterranee e non sarebbero richieste modifiche rilevanti ai sistemi di irrigazione (basso costo)

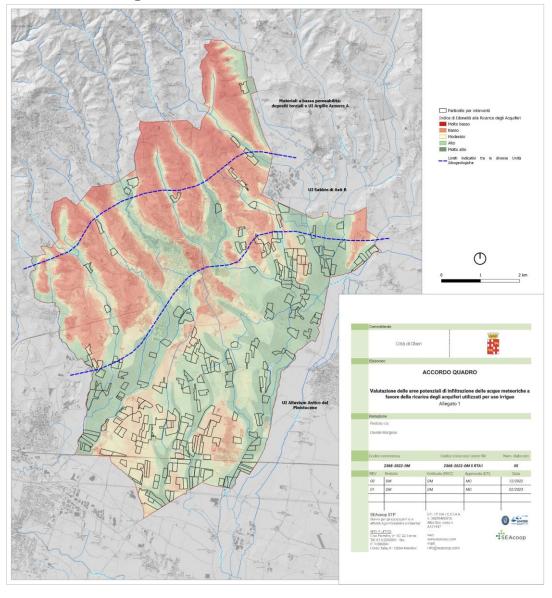
Le aziende agricole possono contribuire attivamente ad un processo di tutela e ricarica diffusa

Strategia

Aumentare la capacità di ricarica degli acquiferi

Diminuire le perdite per deflusso superficiale

ACQUIFERO SUPERFICIALE				
ENTRATE	mm/anno	Mm3/anno	m3/s	%
Infiltrazione efficace	149	134	4,2	46%
Flusso in ingresso al contorno (orizz.)	21	19	0,6	7%
Flusso dal 2° al 1° strato (vert.)	152	136	4,3	47%
Perdite in subalveo	1	1	0,0	0%
Totale	323	289	9,2	100%
USCITE				
Flusso in uscita al contorno (orizz.)	21	19	0,6	6%
Flusso dal 1° al 2° strato (vert.)	102	91	2,9	30%
Prelievi da pozzo	24	22	0,7	7%
Drenaggio verso reticolo principale	80	72	2,3	24%
Drenaggio rete secondaria, fontanili	113	101	3,2	33%
Totale	340	305	9,7	100%
Variazione di immagazzinamento	-17	-15	-0,5	-5%



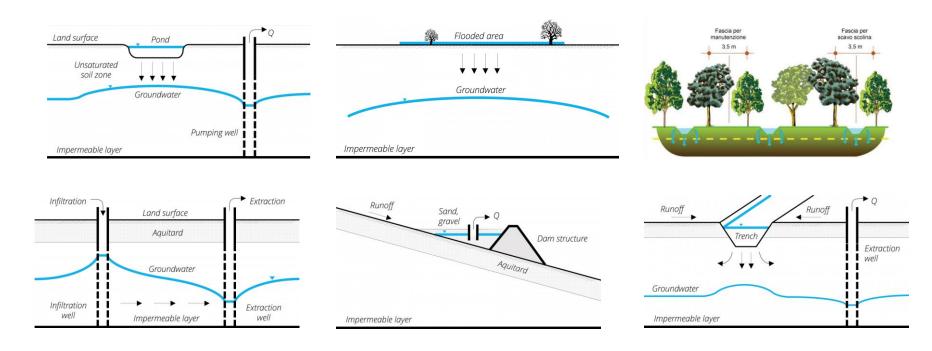
1) Identificare le aree idonee

Produzione di una carta dell'idoneità alla realizzazione di interventi per la ricarica degli acquiferi individuando quali acquiferi sono interessati (profondi: acque potabili; superficiali: acque a uso irriguo/produttivo)

Variante generale del PRGC della Città di Chieri

- 2) Identificare le soluzioni NBS per favorire la ricarica nelle aree idonee:
- Managed Aquifer Recharge (MAR)
- Pratiche agronomiche

Soluzioni compatibili con gli usi del suolo attuale

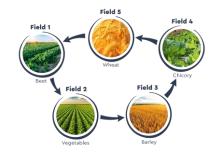

Soluzioni di costo contenuto

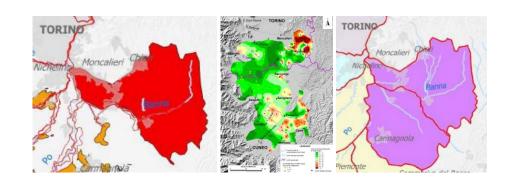
Soluzioni che **generano molti co-benefici**

Soluzioni per le quali sono presenti risorse per l'attuazione

Interventi localizzati: Managed Aquifer Recharge (MAR)

Abaco per soluzioni sito-specifiche



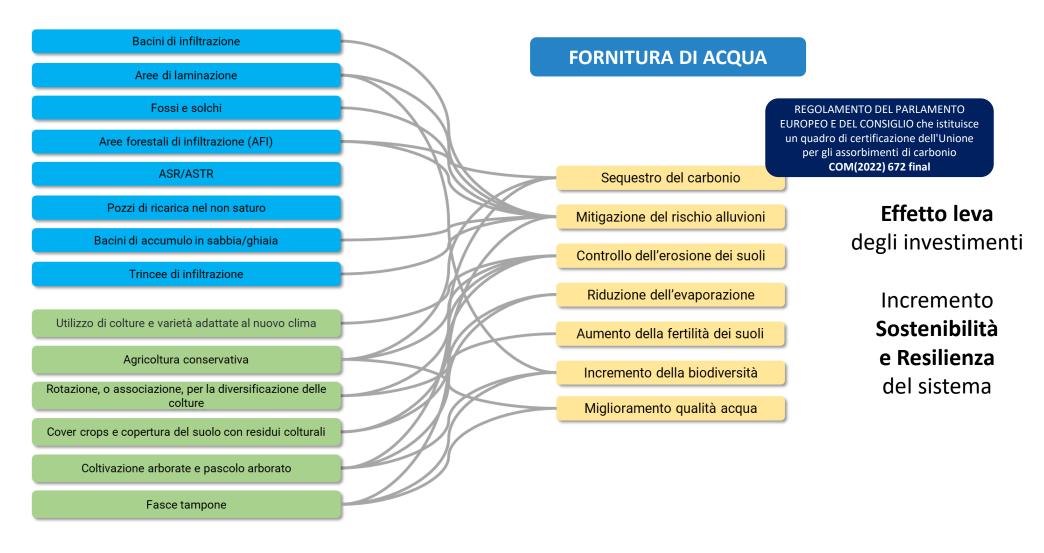

Interventi diffusi: Pratiche agronomiche

Cover crops

Rotazione o avvicendamento

Agricoltura conservativa o minima lavorazione

Agricoltura e pascolo arborati


Fasce tampone

Abaco per soluzioni sito-specifiche

Co-benefici

Generazione di Servizi Ecosistemci

Supporto economico

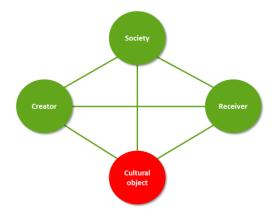
- Attivazione di PES (art. 70 L. 221/2015)
- Convenzioni con le amministrazioni pubbliche (D. Lgs. 228/2001 e smi)
- Supporto alle aziende che partecipano all'attuazione: Piano Strategico Nazionale per la PAC e Complemento Strategico Regionale
- POR-FESR

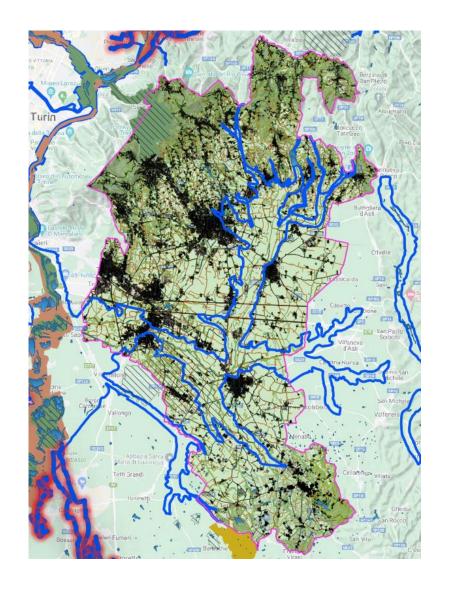
Coinvolgimento degli agricoltori

Ritorno di esperienza del progetto Cuore Resiliente WP 3.3 (Alcotra 2014-2020)

A scientifically based cultural-model of ecosystem services management for the definition of natural risk reduction and climate change adaptation policies

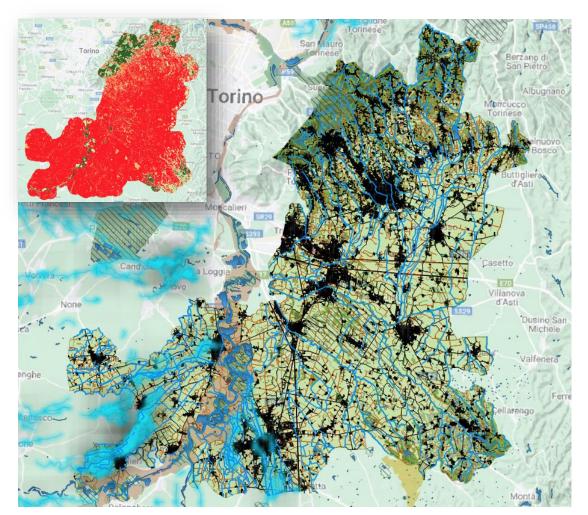
> <u>Dr.</u> S. D. Murgese A. D. <u>Arcostanzo</u>, M. <u>Cimini</u> SEAcoop <u>STP</u>





Gestione del territorio coerente con le indicazioni degli studi specialistici, ma condotte sulla base di un modello culturale condiviso dalla popolazione

Applicazione in ambito POR-FESR



SEAcoop STP: realizzazione di un master-plan centrato sul tema dell'acqua co-progettato con gli enti pubblici che rientrano nel territorio di Corona Verde per definire Nature Based Solutions per consolidare e rafforzare la rete ecologica e ad incrementare la fornitura di servizi ecosistemci.

Estensione dello studio sulle aree di ricarica accoppiato alla valutazione dei Servizi Ecosistemici.

Horizon Europe SELINA

SELINA receives funding from the European Union's Horizon Europe research and innovation programme under grant agreement No 101060415.

SEAcoop STP partner

Definizione di modelli di gestione sostenibile delle aziende agricole per la preservazione del Capitale Naturale degli agroecosistemi, l'incremento della fornitura di servizi ecosistemci, l'adattamento ai cambiamenti climatici e l'aumento della resilienza del territorio.

https://project-selina.eu/

Conclusioni

- 1) Gli **organismi pubblico-privati quali i Distretti del Cibo** possono giocare un ruolo importante e raccolgono i portatori di interesse del territorio
- 2) Coerenza con il **WEF Nexus**
- 3) La **pianificazione** consente l'ottimizzazione degli investimenti e la massimizzazione della loro efficacia
- 4) Le **NBS** consentono soluzioni **puntuali** (MAR) o **diffuse** (pratiche agricole sostenibile) e determinano numerosi co-benefici (in primis la riduzione del fabbisogno) in termini di erogazione di **Servizi** Ecosistemici. Esse possono divenire una **fonte integrativa del reddito** aziendale
- 5) Un **processo strutturato e multidisciplinare** consentire una miglior focalizzazione delle risorse della programmazione europea (fondi a gestione diretta o indiretta)
- 6) Le aziende agricole rivestono un ruolo chiave nel processo di tutela della risorsa
- 7) Infine, nel caso dell'uso irriguo, deve essere considerata la possibilità di **reimpiego delle** acque reflue trattate, come già avviene in altri contesti nazionali o internazionali

Coltivare l'acqua

Ricaricare le falde acquifere generando reddito per le aziende agricole

Grazie per l'attenzione

Davide Murgese

murgese@seacoop.com

